Disjoint empty convex pentagons in planar point sets

نویسندگان

  • Bhaswar B. Bhattacharya
  • Sandip Das
چکیده

Harborth [Elemente der Mathematik, Vol. 33 (5), 116–118, 1978] proved that every set of 10 points in the plane, no three on a line, contains an empty convex pentagon. From this it follows that the number of disjoint empty convex pentagons in any set of n points in the plane is least ⌊ n 10 ⌋. In this paper we prove that every set of 19 points in the plane, no three on a line, contains two disjoint empty convex pentagons. We also show that any set of 2m+9 points in the plane, where m is a positive integer, can be subdivided into three disjoint convex regions, two of which contains m points each, and another contains a set of 9 points containing an empty convex pentagon. Combining these two results, we obtain non-trivial lower bounds on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least ⌊ 5n 47 ⌋. This bound has been further improved to 3n−1 28 for infinitely many n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Point Sets with a Small Number of Empty Convex Polygons

A subset A of a finite set P of points in the plane is called an empty polygon, if each point of A is a vertex of the convex hull of A and the convex hull of A contains no other points of P . We construct a set of n points in general position in the plane with only ≈ 1.62n empty triangles, ≈ 1.94n empty quadrilaterals, ≈ 1.02n empty pentagons, and ≈ 0.2n empty hexagons.

متن کامل

On empty pentagons and hexagons in planar point sets

We give improved lower bounds on the minimum number of k-holes (empty convex k-gons) in a set of n points in general position in the plane, for k = 5, 6.

متن کامل

On Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...

متن کامل

Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...

متن کامل

Empty pentagons in point sets with collinearities

An empty pentagon in a point set P in the plane is a set of five points in P in strictly convex position with no other point of P in their convex hull. We prove that every finite set of at least 328` points in the plane contains an empty pentagon or ` collinear points. This is optimal up to a constant factor since the (` − 1) × (` − 1) grid contains no empty pentagon and no ` collinear points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2013